
LaF

A package for processing large ASCII �les

D.J. van der Laan

2011-11-06

1 Introduction

LaF is a R package for reading large ASCII �les. It o�ers some functionality

that is missing from the regular R routines for processing ASCII �les. First

of all, it is optimised for speed. Especially reading �xed width �les is very

slow with the regular R routine read.fwf. However, since it is optimised for

speed some of the �exibility of the regular routines is lost. Seconly, it o�ers

random access: only those rows and columns are read that are needed. With

the regular routines one always has to read all columns.

The problem with big �les is that they do not �t into memory. One

could consider this even to be the de�nition of `big'. To comfortably work

with data in R the data set needs to �t multiple (∼3) times into memory.

There are roughly two methods for working with data that doesn't �t into

memory. The �rst is to read the data in blocks that do �t into memory

process each of these block and merge the results. More on this can be

found in section 3. The second is to read only that part of the data into

memory which is needed for the calculation at hand hoping that that subset

does �t into memory. For example to crosstabulate two variabeles one only

needs these two variables. As most datasets contain dozens of variables this

can easily reduce the memory needed for the operation by a factor of ten.

More on this in section 4.

Why ASCII? Why not use a binary format like ff and similar packages

do? True, binary storage allows for much faster access since the conversion

from ASCII to binary format is not needed and data can often be stored

much more compact. The main reason is portability. Almost every program

designed for data processing can read ASCII �les. And even if one wants to

use a package like ff, the source �les are often ASCII �les and �rst need to

be converted to ff format. LaF can also speed up this last process.

1

2 Opening a �le

2.1 Column types

LaF currently supports the following column types

double Fields containing �oating point numbers. Scienti�c notation (e.g.

1.9E-16) is not supported. The character used for the decimal mark

can be speci�ed using the dec option of the functions used to open

�les.

integer Fields containing positive or negative integer numbers (e.g. 42,

-100)

categorical Categorical �elds are treated as character �elds except that a

table is built mapping all observed values to integers. A factor vector

is returned in R when this type is used. The levels can be read and set

using the levels method.

string Character �elds such as postcodes, identi�cation numbers.

As of version 0.5 of LaF it is also possible to set levels of non categorical

columns using the levels method. For more information see paragraph 5.

2.2 Fixed width �les

In �xed width �les columns are de�ned by character positions in the �les.

For example, the �rst seven characters of each line belong to the �rst column,

the next two characters belong to the second, etc. Each line therefore has

the same number of characters. This is also a disadvantage of the format.

If there is a column with variable string lenghts, the column has to be wide

enough to accomodate the widest �eld. The main advantage of the format is

that reading in large �les (and especially random access) can be very e�cient

as the positions of rows and columns can be calculated.

Fixed width �les can be openen using the function laf_open_fwf. In

order to open a �le the following options can be speci�ed:

�lename name of the �le to be opened.

column_types Character vector containing the types of data in each of

the columns. Valid types are: double, integer, categorical and string.

column_widths Numeric vector containing the width in number of char-

acter of each of the columns.

column_names (optional) Optional character vector containing the names

of the columns. The default names are `V1', `V2', etc.

2

dec (optional) Optional character specifying the decimal mark. The de-

fault value is `.'.

trim (optional) Optional logical value specifying whether of not character

strings should be trimmed left and right from white space. This applies

to both columns of type `string' as `categorical'. For �xed width �les

the default is true (trim white space).

Suppose the following data is stored in the �le `�le.fwf' in the current

working directory (showing only the �rst �ve lines):

617031F5827OK 62 683.23

687109F1685QF 63 541.59

168350F4555SL 42 1814.58

916573M3854UW 68 701.48

98732M7583HX 85 1353.22

Then this �le can be openened using the following command:

> dat <- laf_open_fwf(filename="file.fwf",

+ column_types=c("integer", "categorical",

+ "string", "integer", "double"),

+ column_names=c("id", "gender", "postcode", "age", "income"),

+ column_widths=c(6, 1, 6, 3, 8))

dat is now a laf object. Data can be extracted from this object using the

commands described in sections 3 and 4. For example, to read all data in

the �le one can use the following command:

> alldata <- dat[,]

2.3 Comma separated �les

In comma seperated �les each line contains a row of data, the columns are

seperated using a seperator character which is usually a comma although

other seperator characters are also used (e.g. the `;' is often used in Europe

where the comma is often used as the decimal seperator). It is a often used

format. The disadvantage compared to the �xed width format is that the

positions of columns and rows in the �le can not be calculated. Therefore,

a program reading a comma seperated �le has to scan through the entire

�le to �nd a certain row or column making random access much slower than

with �xed width �les.

A comma seperated �le for the LaF package has to observe the follow-

ing rules someof which slightly deviate from the `o�cial' rules of comma

seperated �les:

3

� The �rst row can not contain the column names. These should be

speci�ed using the option column_names of the function laf_open_csv.

The �rst line in the �le is treated as the �rst data row and the columns

in this line should be of the correct type.

� Quotes are treated slightly di�erent from the way they are normally

treated in csv �les. Only double quotes are accepted. Everything inside

double quotes is considered part of the �eld except newline characters

and double quotes. Double quotes in text �elds are therefore not pos-

sible. Below are a few examples of how quotes are interpreted:

� 12345 = 12345

� "12345" = 12345

� "123"45 = 12345

� "123""45" = 123"45"

� "123\n45" = ERROR

� 12"345" = 12"345"

� Each line in the �le should contain exactly one row of data. Normally

line breaks should be possible inside quoted columns. In order to keep

the code as fast as possible, this is not the case in the LaF package.

Comma seperated �les can be opened using the function laf_open_csv. This

function accepts the following arguments:

�lename name of the �le to be opened.

column_types Character vector containing the types of data in each of

the columns. Valid types are: double, integer, categorical and string.

column_names (optional) Optional character vector containing the names

of the columns. The default names are `V1', `V2', etc.

sep (optional) Optional character specifying seperator mark used between

the columns. The default value is `,'.

dec (optional) Optional character specifying the decimal mark. The de-

fault value is `.'.

trim (optional) Optional logical value specifying whether of not character

strings should be trimmed left and right from white space. This applies

to both columns of type `string' as `categorical'. For comma separated

�les �les the default is false (do not trim white space).

4

skip (optional) Optional numeric value specifying the number of lines at

the beginning of the �le that should be skipped before starting to read

data. This can be used, for example, to skip the header as headers are

not supported: the user is required to specify the types and names of

the columns.

As of version 0.5 of the LaF package, there is also the detect_dm_csv routine,

which can automatically detect column types. See paragraph 2.4 for more

information on how to use data models to open �les.

Suppose the following data is stored in the �le `�le.csv' in the current

working directory (showing only the �rst �ve lines):

617031,F,5827OK,62,683.230000

687109,F,1685QF,63,541.590000

168350,F,4555SL,42,1814.580000

916573,M,3854UW,68,701.480000

98732,M,7583HX,85,1353.220000

Then this �le can be openened using the following command:

> dat <- laf_open_csv(filename="file.csv",

+ column_types=c("integer", "categorical",

+ "string", "integer", "double"),

+ column_names=c("id", "gender", "postcode", "age", "income"))

dat is now a laf object. Data can be extracted from this object using the

commands described in sections 3 and 4. For example, to read all data in

the �le one can use the following command:

> alldata <- dat[,]

2.4 Opening using data models

As of version 0.5 LaF has the ability to store all of the arguments needed

by laf_open_fwf and laf_open_csv in so called data models. These data

models can be written to and read from �les using the functions write_dm

and read_dm respectively. write_dm accepts either a data model or a laf

object as its input. To write the data model of the data set from the previous

section to �le:

> write_dm(dat, "model.yaml")

The data model is written in the well documented and readable YAML

format:

type: csv

filename: file.csv

5

sep: ','

dec: '.'

skip: 0

trim: no

columns:

- name: id

type: integer

- name: gender

type: categorical

- name: postcode

type: string

- name: age

type: integer

- name: income

type: double

The format probably speaks for itself. It is also probable to manually write

these �les and read them using read_dm. To open a �le using a data model

the function laf_open can be used:

> dat <- laf_open(read_dm("model.yaml"))

Data models can also be generated from CSV-�les and Blaise data models

using the routines detect_dm_csv and read_dm_blaise. See the documen-

tation of these routines for more information.

3 Blockwise processing

Blockwise processing of a �le usually has the following structure:

1. Go to the beginning of the �le

2. Read a block of data

3. Perform calculations on this block perhaps using results from the pre-

vious block.

4. Store results

5. Repeat 2�4 until all data has been processed.

6. If necessary combine the results of all the blocks.

In order to go to a speci�c position in the �le LaF o�ers two methods:

begin and goto. The �rst method simply goes to the beginning of the �le

while the second goes to the speci�ed line. Assume, a laf object named

dat has been created (see section 2 for this). The only argument needed by

begin is the laf object:

6

> begin(dat)

For goto also the line number needs to be speci�ed. The following command

sets the �lepointer at the beginning of line 1000. The next call to next_block

(see below) will therefore return as �rst row the data belonging in line 1000

of the �le.

> goto(dat, 1000)

Blocks of data can be read using next_block. The �rst argument needs

to be the reference to the �le (the laf object); other arguments are optional.

By default all columns and 5000 lines are read:

> d <- next_block(dat)

> nrow(d)

[1] 5000

The number of lines can be speci�ed using the nrows argument and the

columns that should be read can be speci�ed using the columns argument.

The following command reads 100 lines and the �rst and third column.

> d <- next_block(dat, columns=c(1,3), nrows=100)

> dim(d)

[1] 100 2

If possible the use of the columns argument is advised. This can signi�cantly

speed up the processing of the �le. First of all, the amount of data that needs

to be transfered to R is much smaller. Second, the strings in the unread

columns do not need to be converted to numerical values.

When the end of the �le is reached next_block returns a data.frame

with zero rows. This can be used to detect the end of �le. The following

example shows how begin and can be used to calculate the number of

elements equal to 2 in the second column.

> n <- 0

> begin(dat)

> while (TRUE) {

+ d <- next_block(dat, 2)

+ n <- n + sum(d$gender == 'M')

+ if (nrow(d) == 0) break;

+ }

> print(n)

[1] 5044

7

Since processing a �le in this way is such a common task, the method

process_blocks has been de�ned that automates this and is faster. This

method accepts as its �rst argument a laf object. The second argument

should be the function that should be applied to each of the blocks. This

function should accept as its �rst argument the data blocks. The last time

the function is called it receives a data.frame with zero rows. This can

be used to do some end calculations. The second argument of the function

is the result of the previous function call. The �rst time the function is

called the second argument had the value NULL. This can be used to perform

initialisation. Additional arguments to process_blocks are passed on to the

function. The previous example can be translated into:

> count <- function(d, prev) {

+ if (is.null(prev)) prev <- 0

+ return(prev + sum(d$gender == 'M'))

+ }

> (n <- process_blocks(dat, count))

[1] 5044

Using process_blocks is faster than using next_block repeatedly since the

data.frame containing the data that is read in, is destroyed and created

every iteration, while in process_blocks this data.frame is created only

once.

Below is an example that calculates the average of the third column of

the �le and illustrates initialisation and �nilisation (note this is not how you

will want to calculate the average over a column in a large �le). Since only

the third column of the �le is needed for this calculation, the columns option

is used which makes the calculation much faster.

> ave <- function(d, prev) {

+ # initialisation

+ if (is.null(prev)) {

+ prev <- c(sum=0, n=0)

+ }

+ # finilisation

+ if (nrow(d) == 0) {

+ return(as.numeric(prev[1]/prev[2]))

+ }

+ result <- prev + c(sum(d$income), nrow(d))

+ return(result)

+ }

> (n <- process_blocks(dat, ave, columns=5))

[1] 988.6557

8

4 Selecting subsets

An other common way of handling large �les is to only read in the data that

is needed for the operation at hand. This is feasible when such a subset of

the data does �t into memory. For this, selections can be performed on a

laf object using the same methods one would use for a regular data.frame.

The code below shows several di�erent examples:

> # select the first 10 rows

> result <- dat[1:10,]

> # select the second column

> result <- dat[, 2]

> # select the first 10 rows and the second column

> result <- dat[1:10, 2]

Indexing a laf object always results in a data.frame. For example, the

second and last example would have resulted in a vector when applied to a

data.frame, while in the examples above a data.frame with one column is

returned.

Using the $ and [[operators columns can be selected from the laf object.

The result is an object of type laf_column which is a subclass of laf. It is a

laf object with a �eld containing the column number. To get the data inside

these columns indexing can be used as is shown in the following examples.

In the �rst example the records are selected from the �le for which the age

is higher than 65:

> result <- dat[dat$age[] > 65,]

The same can be done using the column number

> result <- dat[dat[[4]][] > 65,]

or

> result <- dat[dat[, 4] > 65,]

or

> result <- dat[dat[, "age"] > 65,]

5 Setting levels of columns

It is possible to set the levels of categorical and non-categorical columns.

Since the �le is read only, it is not possible to renumber the columns as

would happen if we would change a column in a data.frame to factor.

Therefore, we need to specify both the levels and the corresponding labels

as a data.frame. For example, to change the `age' column to a factor:

9

> levels(dat)[["age"]] <- data.frame(levels=0:100, labels=paste(0:100, "years"))

> dat$age[1:10]

[1] 62 years 63 years 42 years 68 years 85 years

[6] 79 years 84 years 70 years 83 years 38 years

101 Levels: 0 years 1 years 2 years ... 100 years

These levels are also written to �le when writing a data model to �le using

write_dm and read in by read_dm. You can therefore also specify the levels

of a column in the data model.

type: csv

filename: file.csv

sep: ','

dec: '.'

skip: 0

trim: no

columns:

- name: id

type: integer

- name: gender

type: categorical

- name: postcode

type: string

- name: age

type: integer

labels:

- level: 0

label: 0 years

- level: 1

label: 1 years

- level: 2

label: 2 years

- level: 3

label: 3 years

- level: 4

label: 4 years

- level: 5

label: 5 years

- level: 6

...

10

6 Calculating column statistics

Using process_blocks one can calculate all kinds of summary statistics for

columns. However, as some summary statistics are very common, these have

been implemented in the package. The available methods are:

colsum Calculate column sums

colmean Calculate column means

colfreq Calculate frequency tables of columns

colrange Calculate the maximum and minimum value of

columns

colnmissing Calculate the number of missing values in columns

All methods accept as �rst argument either a laf or laf_column object.

In case of a laf object the second argument should be a vector of column

numbers for which the statistics should be calculated. For a laf_column

this is not necessary. For example, to calculate the average age the following

options are available:

> (m1 <- colmean(dat, columns=4))

age

54.0142

> (m1 <- colmean(dat$age))

age

54.0142

Most methods also accept an na.rm argument, which ignores, as one would

expect, missing values when calculating the statistics. The method colnmissing

does not have this argument which would be meaningless. colfreq has the

argument useNA which can take one the values `ifany', `always' or `no'.

11

